## § 60.195 - (1) Alternative testing requirements are established for Anaconda Aluminum Company's Sebree plant in Henderson, Kentucky: The anode bake plant and primary control system are to be tested once a year rather than once a month. - (2) Alternative testing requirements are established for Alumax of South Carolina's Mt. Holly Plant in Mt. Holly, South Carolina: The anode bake plant and primary control system are to be tested once a year rather than once a month. [45 FR 44207, June 30, 1980, as amended at 54 FR 6669, Feb. 14, 1989] # § 60.195 Test methods and procedures. - (a) In conducting the performance tests required in §60.8, the owner or operator shall use as reference methods and procedures the test methods in appendix A of this part or other methods and procedures as specified in this section, except as provided in §60.8(b). - (b) The owner or operator shall determine compliance with the total fluorides and visible emission standards in §§ 60.192 and 60.193 as follows: - (1) The emission rate $(E_p)$ of total fluorides from potroom groups shall be computed for each run using the following equation: $E_p \text{=} [(C_s \ Q_{sd})_1 \text{+} (C_s \ Q_{sd})_2] / (P \ K)$ where $E_p {=} emission \ rate \ of total fluorides from a potroom group, kg/Mg (lb/ton).$ C<sub>s</sub>=concentration of total fluorides, mg/dscm (gr/dscf). $Q_{sd}$ =volumetric flow rate of effluent gas, dscm/hr (dscf/hr). P=aluminum production rate, Mg/hr (ton/hr). K=conversion factor, 10<sup>6</sup> mg/kg (7,000 gr/lb). 1=subscript for primary control system effluent gas. 2=subscript for secondary control system or roof monitor effluent gas. (2) The emission rate $(E_b)$ of total fluorides from anode bake plants shall be computed for each run using the following equation: $E_b = (C_s \ Q_{sd})/(P_e K)$ where $E_b {=} emission \ rate \ of total fluorides, kg/Mg \ (lb/ton) \ of aluminum equivalent.$ $C_s$ =concentration of total fluorides, mg/dscm (gr/dscf). Q<sub>sd</sub>=volumetric flow rate of effluent gas, dscm/hr (dscf/hr). P<sub>e</sub>=aluminum equivalent for anode production rate, Mg/hr (ton/hr). K=conversion factor, 106 mg/kg (7.000 gr/lb). - (3) Methods 13A or 13B shall be used for ducts or stacks, and Method 14 for roof monitors not employing stacks or pollutant collection systems, to determine the total fluorides concentration ( $C_s$ ) and volumetric flow rate ( $Q_{sd}$ ) of the effluent gas. The sampling time and sample volume for each run shall be at least 8 hours and 6.80 dscm (240 dscf) for potroom groups and at least 4 hours and 3.40 dscm (120 dscf) for anode bake plants. - (4) The monitoring devices of §60.194(a) shall be used to determine the daily weight of aluminum and anode produced. - (i) The aluminum production rate (P) shall be determined by dividing 720 hours into the weight of aluminum tapped from the affected facility during a period of 30 days before and including the final run of a performance test. - (ii) The aluminum equivalent production rate $(P_c)$ for anodes shall be determined as 2 times the average weight of anode produced during a representative oven cycle divided by the cycle time. An owner or operator may establish a multiplication factor other than 2 by submitting production records of the amount of aluminum produced and the concurrent weight of anodes consumed by the potrooms. - (5) Method 9 and the procedures in §60.11 shall be used to determine opacity [54 FR 6669, Feb. 14, 1989, as amended at 65 FR 61757, Oct. 17, 2000] # Subpart T—Standards of Performance for the Phosphate Fertilizer Industry: Wet-Process Phosphoric Acid Plants # § 60.200 Applicability and designation of affected facility. (a) The affected facility to which the provisions of this subpart apply is each wet-process phosphoric acid plant having a design capacity of more than 15 tons of equivalent $P_2O_5$ feed per calendar day. For the purpose of this subpart, the affected facility includes any combination of: reactors, filters, evaporators, and hot wells. (b) Any facility under paragraph (a) of this section that commences construction or modification after October 22, 1974, is subject to the requirements of this subpart. [42 FR 37937, July 25, 1977, as amended at 48 FR 7129, Feb. 17, 1983] #### § 60.201 Definitions. As used in this subpart, all terms not defined herein shall have the meaning given them in the Act and in subpart A of this part. - (a) Wet-process phosphoric acid plant means any facility manufacturing phosphoric acid by reacting phosphate rock and acid. - (b) *Total fluorides* means elemental fluorine and all fluoride compounds as measured by reference methods specified in §60.204, or equivalent or alternative methods. - (c) Equivalent $P_2O_5$ feed means the quantity of phosphorus, expressed as phosphorus pentoxide, fed to the process. [40 FR 33154, Aug. 6, 1975, as amended at 65 FR 61757, Oct. 17, 2000] # § 60.202 Standard for fluorides. (a) On and after the date on which the performance test required to be conducted by 60.8 is completed, no owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any affected facility any gases which contain total fluorides in excess of 10.0 g/Mg of equivalent $P_2O_5$ feed (0.020 lb/ton). $[40\ FR\ 33154,\ Aug.\ 6,\ 1975,\ as\ amended\ at\ 65\ FR\ 61757,\ Oct.\ 17,\ 2000]$ # § 60.203 Monitoring of operations. (a) The owner or operator of any wetprocess phosphoric acid plant subject to the provisions of this subpart shall install, calibrate, maintain, and operate a monitoring device which can be used to determine the mass flow of phosphorus-bearing feed material to the process. The monitoring device shall have an accuracy of $\pm 5$ percent over its operating range. - (b) The owner or operator of any wetprocess phosphoric acid plant shall maintain a daily record of equivalent $P_2O_5$ feed by first determining the total mass rate in Mg/hr of phosphorus bearing feed using a monitoring device for measuring mass flowrate which meets the requirements of paragraph (a) of this section and then by proceeding according to $\S60.204(b)(3)$ . - (c) The owner or operator of any wetprocess phosphoric acid subject to the provisions of this part shall install, calibrate, maintain, and operate a monitoring device which continuously measures and permanently records the total pressure drop across the process scrubbing system. The monitoring device shall have an accuracy of ±5 percent over its operating range. [40 FR 3154, Aug. 6, 1975, as amended at 54 FR 6669, Feb. 14, 1989; 65 FR 61757, Oct. 17, 2000] ### § 60.204 Test methods and procedures. - (a) In conducting the performance tests required in §60.8, the owner or operator shall use as reference methods and procedures the test methods in appendix A of this part or other methods and procedures as specified in this section, except as provided in §60.8(b). - (b) The owner or operator shall determine compliance with the total fluorides standard in §60.202 as follows: - (1) The emission rate (E) of total fluorides shall be computed for each run using the following equation: $$E = \left(\sum_{i=1}^{N} C_{si} Q_{sdi}\right) / (PK)$$ where: E=emission rate of total fluorides, g/Mg (lb/ ton) of equivalent $P_2O_5$ feed. C<sub>si</sub>=concentration of total fluorides from emission point "i," mg/dscm (gr/dscf). Q<sub>sdi</sub>=volumetric flow rate of effluent gas from emission point "i," dscm/hr (dscf/hr). N=number of emission points associated with the affected facility. P=equivalent P<sub>2</sub>O<sub>5</sub> feed rate, Mg/hr (ton/hr). K=conversion factor, 1000 mg/g (7,000 gr/lb). (2) Method 13A or 13B shall be used to determine the total fluorides concentration $(C_{si})$ and volumetric flow rate $(Q_{sdi})$ of the effluent gas from each of the emission points. The sampling